Acyclic Edge coloring of Planar Graphs

نویسندگان

  • Manu Basavaraju
  • L. Sunil Chandran
چکیده

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a(G) ≤ ∆ + 2, where ∆ = ∆(G) denotes the maximum degree of the graph. We prove that if G is a planar graph with maximum degree ∆, then a(G) ≤ ∆+ 12.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic chromatic index of triangle-free 1-planar graphs

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if it can be drawn on the plane such that every edg...

متن کامل

Acyclic edge coloring of planar graphs with Δ colors

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge coloring of every graph G [6]. The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is ∆+12 [2]. In this paper, we study simple planar graph...

متن کامل

Acyclic edge-coloring of planar graphs: ∆ colors suffice when ∆ is large

An acyclic edge-coloring of a graph G is a proper edge-coloring of G such that the subgraph induced by any two color classes is acyclic. The acyclic chromatic index, χa(G), is the smallest number of colors allowing an acyclic edge-coloring of G. Clearly χa(G) ≥ ∆(G) for every graph G. Cohen, Havet, and Müller conjectured that there exists a constant M such that every planar graph with ∆(G) ≥M h...

متن کامل

An improved bound on acyclic chromatic index of planar graphs

A proper edge coloring of a graph G is called acyclic if there is no bichromatic cycle in G. The acyclic chromatic index of G, denoted by χ′a(G), is the least number of colors k such that G has an acyclic edge k-coloring. Basavaraju et al. [Acyclic edgecoloring of planar graphs, SIAM J. Discrete Math. 25 (2) (2011), 463–478] showed that χ′a(G) ≤ ∆(G) + 12 for planar graphs G with maximum degree...

متن کامل

Acyclically 3-Colorable Planar Graphs

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...

متن کامل

Further result on acyclic chromatic index of planar graphs

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). In this paper, we prove that every planar graph G admits an acyclic edg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011